It does NOT work with any of MS SQL Server ODBC drivers, because, simply put, they suck. They don't allow the program to keep more than one fetch sequence open (SELECT statements, prepared, and ready to be executed with new sets of input variables). Even the use of static cursors doesn't help in this case.
#include <iostream.h> #include <stdio.h>
#define OTL_ODBC // Compile OTL 4.0/ODBC #define OTL_STL // turn on OTL in the STL compliance mode #define OTL_STREAM_POOLING_ON // turn on OTL stream pooling. // #define OTL_STREAM_POOLING_ON line // can be commented out, the number of iterations in // the select() loop can be increased, and the difference // in performace with and without OTL_STREAM_POOLING_ON can // be benchmarked. The difference should grow with the overall // number of streams to be used in one program. #include <otlv4.h> // include the OTL 4.0 header file otl_connect db; // connect object void insert() // insert rows into table { otl_stream o(50, // buffer size "insert into test_tab values(:f1<int>,:f2<char[31]>)", // SQL statement db // connect object ); char tmp[32]; for(int i=1;i<=100;++i){ sprintf(tmp,"Name%d",i); o<<i<<tmp; } #ifdef OTL_STREAM_POOLING_ON o.close(false); // do not save the stream in the stream pool. // in other words, destroy it on the spot, since // the stream is not going to be reused later. #else o.close(); #endif } void select() { // when this function is called in a loop, // on the second iteration of the loop the streams i1, i2 will // will get the instances of the OTL stream from the stream // pool, "fast reopen", so to speak. otl_stream i1(50, // buffer size "select * from test_tab where f1>=:f11<int> and f1<=:f12<int>*2", // SELECT statement db // connect object ); // create select stream otl_stream i2(33, // buffer size "select f1,f2 from test_tab where f1>=:f11<int> and f1<=:f12<int>*2", // SELECT statement db // connect object ); // create select stream // i1 and i2 are NOT similar, because their buffer sizes as well // as SQL statements are not equal. It will generate two entry points in the // OTL stream pool. int f1; char f2[31]; i1<<2<<2; // assigning :f11 = 2, :f12 = 2 // SELECT automatically executes when all input variables are // assigned. First portion of output rows is fetched to the buffer while(!i1.eof()){ // while not end-of-data i1>>f1>>f2; cout<<"I1==> f1="<<f1<<", f2="<<f2<<endl; } i2<<3<<3; // assigning :f11 = 2, :f12 = 2 // SELECT automatically executes when all input variables are // assigned. First portion of output rows is fetched to the buffer while(!i2.eof()){ // while not end-of-data i2>>f1>>f2; cout<<"I2==> f1="<<f1<<", f2="<<f2<<endl; } } // destructors of i1, i2 will call the close() // function for both of the streams and the OTL stream // instances will be placed in the stream pool. int main() { otl_connect::otl_initialize(); // initialize the environment try{ db.rlogon("scott/tiger@my_db"); // connect to the database #ifdef OTL_STREAM_POOLING_ON db.set_stream_pool_size(2); // set the maximum stream pool size and actually initializes // the stream pool. // if this function is not called, the stream pool // gets initialized anyway, with the default size of 32 entries. #endif otl_cursor::direct_exec ( db, "drop table test_tab", otl_exception::disabled // disable OTL exceptions ); // drop table otl_cursor::direct_exec ( db, "create table test_tab(f1 int, f2 varchar(30))" ); // create table insert(); // insert records into table for(int i=1;i<=10; ++i){ cout<<"===================> Iteration: "<<i<<endl; select(); // select records from table } } catch(otl_exception& p){ // intercept OTL exceptions cerr<<p.msg<<endl; // print out error message cerr<<p.stm_text<<endl; // print out SQL that caused the error cerr<<p.var_info<<endl; // print out the variable that caused the error } db.logoff(); // disconnect from the database return 0; }
===================> Iteration: 1 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 2 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 3 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 4 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 5 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 6 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 7 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 8 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 9 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 10 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6
Copyright © 1996, 2001, Sergei Kuchin, email: [email protected], [email protected] .
Permission to use, copy, modify and redistribute this document for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies.