Undecidably Inside
Roger Penrose has conjectured that no algorithm exists for determining
the interior of the Mandelbrot set [1].
Stephen Smale & Lenore Blum have done work in support of this
type of conjecture and the relationship of real numbers to
computability [2],[4].
Simant Dube examines a special case of this conjecture for IFS
[3].
The goal of this web page is to explore a candidate for a function
that unambiguously identifies the interior of the Mandelbrot set in
finite time, and to try to understand its properties. The methods used
here are purely experimental (i.e. computational, not theoretical).
The goals are to establish:
- Does the algorithm ever make mistakes, viz. does it ever
mis-identify exterior points as belonging to the interior?
- Does it 'eventually' identify all interior points, or are there
some left unidentified?
- Does it work in P or NP time?
- Does it have practical applications, viz. can it be used to
rapidly compute the area of the Mandelbrot set, or improve
the performance of popular fractal art programs?
The Second Derivative
The behavior of iterated points inside the Mandelbrot set is at least
as interesting as the behavior of those that escape, as explored in the
M-Set Derivations Room.
Of particular interest is the behavior of the second derivative,
shown at left:
If we write the iterated Mandelbrot equation as so:
Zn+1 = Zn2 + c, then, realizing that it
is parameterized by c, we can take its derivative:
Z'n+1 = dZn+1/dc = 2 Z'n Zn + 1.
The second derivative follows:
Z''n+1 = d2Zn+1/dc2 =
2 (Z''n Zn + Z'n2).
Note that Zn, Z'n and Z''n are well
defined for all values of c and finite n: they are entire functions,
'merely' polynomials in c.
For several reasons, it is easier to work with the normalized versions
of these derivatives: define
Pn = Z'n / Zn
and define
Qn = Z''n / Zn.
Note that Pn and Qn are also well defined, being
ratios of polynomials, and containing at most a finite number of poles
and zeros. Again, they are defined both inside and outside and on the
boundary of the Mandelbrot set.
This image shows the Modulus Mn of Qn:
Mn = sqrt ((Re Qn)2 +
(Im Qn)2). It is the dramatic difference
between the interior and exterior of this image that form the
basis of further exploration on this web page.
(Actually, the image shows the logarithm of M4153, where
red is mapped to about log(M)=21, passing through yellow, green,
and down to blue-black at log(M)=-4.
Taking the logarithm helps compress the color space, and bring out
subtle details, especially in the interior. )
The Interior
Of particular interest seems to the the fact that the second derivative
seems to distinguish the interior from the exterior quite elegantly.
But does it really, and how well? Let us iterate for N steps, and then
partition the complex plane into three sets:
- The exterior: a point is marked as belonging to the exterior
if it escaped (in the traditional sense) before the N'th iteration.
- The maybe-interior: a point is marked as maybe-belonging to the
interior if Mn < n / (log(n)*log(n)) for some
10<n<N.
(The arbitrary lower limit of 10 is imposed to avoid some low-order
confusion).
- The undecided: any point not in either of the above two sets.
Some numerical tests were carried out that seem very positive. A point
that is identified as 'maybe-interior' seems to never be later
identified as belonging to the exterior. (This check can be made at
every stage n of the iteration). The set that is 'undecided' seems to
get smaller as N gets larger. The following collection of images seems
to support these claims. The dark blue areas are points that have been
conclusively identified as belonging to the exterior. The yellow
areas are the 'undecided' points, and the dark green areas are the
points that have been labelled as 'interior'. If the interior and
exterior areas intersected, then they would have shown in red. Red
never seems to come up.
This image shows the Mandelbrot set, and stops iteration at N=210.
Note the fairly wide strip of 'undecided' area separating the interior
from the boundary.
(Click on the image to view a larger version of the same.)
Same image as above, but iterated to N=4210. Note how the 'undecided'
area has narrowed dramatically.
The horns tend to be a particularly troublesome area. This image helps
demonstrate that the algorithm behaves well near the horns. Note
that the more optimistic test Mn < n/log(n) fails near
the horns (that image is not shown, but you are welcome to discover that
on your own). This image also illustrates that it is quite
conservative, and tends to keep a good distance from the boundary of the
set. As such, it is both a relief and rather irritating: on the one
hand, it seems clearly safe, and on the other, it would be far more
adventurous if it were a bit more flirtatious.
Its possible that a higher derivative might converge faster; however,
what we really want is something that clearly starts filling in the
smaller buds visible in this picture. The fact that this computation is
'safe' near the horns seems to also prevent it from filling up small
buds.
Coverage of the 'baby' at (re,im)=(-1.765, 0) after 2150 iterations.
Coverage of the 'baby' at (re,im)=(-0.16, 1.033) after 2150 iterations.
Coverage of the 'baby' at (re,im)=(-0.16, 1.033) after 12340 iterations.
Its slow going, but the area does slowly fill up.
Although more experimentation is clearly called for, this preliminary
work seems to establish that this algorithm at least never
mis-identifies exterior points.
Rate of Convergence
The next question is: does the algorithm converge? That is, as the
iteration count goes up, does the size of the 'undecided' area shrink
at some reasonable rate?
The graph seems to indicate that it does: not terribly fast, but maybe
good enough.
The graph is a log-log plot of the maximum iteration count vs.
fraction of undecided pixels (undecided/(interior+undecided)).
The fraction of undecided pixels can be thought of as an uncertainty
of the area of the Mandelbrot set: its the fraction of the area
which hasn't been determined to be inside or outside the set.
As more and more iterations are performed,
the fraction of ambiguous pixels drops.
The graph appears to be nearly linear, with a slope of about 1.7.
We conclude that this algorithm obtains
successive digits in area of the Mandelbrot
in non-polynomial time: specifically, to get M decimal digits of
precision in the area, we need to iterate exp (1.7*log(10)*M) times.
The second line of the graph shows the actual number of CPU cycles
needed to compute to a certain level of uncertainty. The slope appears
to be about 0.8: that is, to get M decimal digits of precision in the
area, we need to iterate for exp (0.8*log(10)*M) CPU cycles.
The lesser slope indicates that
the algorithm allows us to stop iterations early
inside the set, and we need to iterate to the bitter end only near the
boundary. However, the time spent iterating near the boundary
quickly dominates the total CPU time: time spent deep in the interior
becomes relatively small. We can conjecture that CPU time spent
in some region is somehow related to some local/average fractal
dimension or complexity, or vice verse might be used to define
a local complexity measure.
This graph shows iteration count and cpu time vs. the fraction of
undecided pixels for a baby. The baby is the same as that shown
pictorially, above. This is (one of ?? the??) largest baby that
doesn't lie on the Re=0 axis. Note it takes considerably more
cycles/iterations to start filling this in. However, the slope
seems to be about the same: 1.75, which matches within measurement
errors.
The slope of the cpu-usage line is about 0.9 which is similar to but
slightly larger than what it was for the overall blob. I wonder if
ever-smaller features become increasingly computationally challenging?
Is the increase of the slope due to the challenge of the exterior, or
the interior, or both?
Convergence vs. Distance to Edge
A better sense of the rate of the convergence can be gotten by looking
at the behavior on slices through the M-set. Both graphs below show
ten nearly-radial slices through the 3-cycle bud located at (-0.125, 0.75).
The upper graph shows how many iterations it took before a point was
determined to be in the 'interior', by the measure described above.
It can be clearly seen that as the edge is approached, the number
of iterations needed to determined the membership of the point increases
disastrously. Note that this is a log-log graph, and rather than being
straight, it seems to have poles.
An alternative but undependable
method of determining if a point lies inside the M-set is to
attempt to detect if its orbit settled down to a cycle.
This method is undependable in that there is seemingly no way to decide
whether the orbit is indeed a cycle: there are exterior points which
come arbitrarily close to being cycles for arbitrarily long periods of
time, before diverging away. Although looking for cycles is
an undependable way to identify interior points, it is interesting
to compare convergence rates of this and the second-derivative method.
For this bud, we measure convergence to the limit 3-cycle by counting iterations
until the cycle got to within 1e-10 of itself.
This figure shows that convergence to the limit cycle also becomes extremely
slow as one approaches the boundary of the M-set.
As the edge of the bud is approached, the
number of iterations explodes far worse than exponentially, and then some.
Note this is a log-log graph. Just for comparison, the green line, labelled
'1/x', shows what a pole in the log would look like in comparison; that is,
its a graph of exp(1/(0.0945-radius)). (The approximate radius of this bud is
0.0945, see The Bud Page for details).
Although we haven't really taken the time to fit properly or correctly,
the divergence looks about that bad or possibly worse.
On the basis of these graphs, it looks like the convergence of this measure
is no better, and no worse, than idea of trying to detect a limit cycle.
The advantage here is that the new algorithm is both a lot simpler,
and seems to actually be reliable. The simplicity is clear: one does
not need to guess at the period of the limit cycle one is looking for.
The reliability is paramount though: exterior points that are close
to the boundary will also appear to approach a limit cycle, and stay
there for an arbitrarily long time, before diverging away. Without
something like the second derivative, there is no way to decide if a
limit cycle has been converged upon.
Efficiency & Practical Applications
This algorithm might be useful to improve the performance of various
fractal art programs ... maybe ... It is primarily useful in avoiding
long iterations in the interior of the Mandelbrot set. However, it does
require significant extra computational overhead (to compute the
derivative) that might erase that advantage. And if the user isn't
looking at something with lots of interior in the picture, then this
algorithm provides no advantage at all.
This algorithm might be used to estimate the area of the Mandelbrot
Set. Note that it counts the area of the babies, as well the main blob.
I believe that the problem of solving for the area of the Mandelbrot set
is still an 'open problem' in mathematics. It's not clear (to me)
if/how this algorithm does anything to move forward on that problem.
Note that this algorithm is something like three orders of magnitude
'slower' than simply taking the area of the Mandelbrot set as everything
that isn't escaped. That is, if a plain-old iteration produces 6 pixels
of uncertainty, then this algorithm will still have something like 6000
pixels of uncertainty. That this is so should be quite dramatically
clear from the pictures above, if you look at them & think: the M-set
outline is rather crisp & sharp in all of these pictures, whereas there
are still huge yellow areas of uncertainty.
Other Approaches
Roger Bagula points out that one can track the convergence of a series
to the limit cycle. If a series converges to the limit cycle, one must
conclude that the point is inside the set. This, however, has problems.
Not only is it computationally difficult in practice (you have to
discover the limit cycle), but also doesn't work in finite time.
Some exterior points will appear to approach a limit cycle, to within
some arbitrary epsilon, before ultimately diverging. Picking any finite
epsilon will fail to eliminate these 'false positives'. The alternative
is to iterate forever, which is no alternative.
Another possibility is to compute the 'plateau'. This seems possible
but difficult for the main blob. However, I am not aware of any
algorithms that will also compute the baby-blobs.
Decidability
Does this algorithm affect arguments about the decidability of the
interior of the Mandelbrot set? There may indeed be undecidable points
in the Mandelbrot set problem; indeed, intuitively, one senses that
points 'on the boundary' are undecidable. However, the algorithm
hints that the measure of the set of undecidable points is low
(well less than two, near one). Hmm, lets re-examine Penrose's
definition for 'non-recursive' again, and see if that's been altered
...
Quickie Bibliography
[1] Roger Penrose (1989), "The Emperor's New Mind", Oxford Press.
[2] Blum L., Shub M. & Smale S. (1989), "On a theory of computation and
complexity over the real numbers: NP completeness, recursive
functions and universal machines", Bulletin of American
Mathematical Society, 21, pp. 1-46.
[3] Simant Dube (1995), "Undecidable Problems in Fractal Geometry",
http://www.csu.edu.au/ci/vol2/undecide/undecide.html
[4] Lenore Blum, (1990) "The Goedel Incompleteness Theorem and Decidability
over a Ring"
Authored by Linas Vepstas
[email protected]
June 2000.
Copyright © 2000 Linas Vepstas
Undecidably Inside
by Linas Vepstas is licensed under a
Creative Commons
Attribution-ShareAlike 4.0 International License.